ANTIMICROBIAL AND PHYTOCHEMICAL PROPERTIES OF YOUNGCocos nucifera(COCONUT) WATER AND METHALONIC EXTRACT OF THE YOUNGCocos nucifera(COCONUT) HUSK


Department Of Biology


PAGES: 105
FORMAT: MS WORD
Chapters: 1-5
PRICE: ₦ 5,000.00

ANTIMICROBIAL AND PHYTOCHEMICAL PROPERTIES OF YOUNGCOCOS NUCIFERA(COCONUT) WATER AND METHALONIC EXTRACT OF THE YOUNGCOCOS NUCIFERA(COCONUT) HUSK   

CHAPTER ONE 

1.0 INTRODUCTION AND LITERATURE REVIEW 

1.1 INTRODUCTION  

Medicinal  plants  represent  a  rich  source  of  antimicrobials  and  many  other  drugs.  The  potentialsof 

higher  plants  as  source  for  new  drugs  is  still  largely  unexplored.  Antibiotic  resistance  has  become  a 

global  concern  (Westhet  al., 2004).  The  clinical  efficacy  of  many  existing  antibiotics  is  being 

threatened  by  the  emergence  of  multidrug-resistant pathogens  (Bandow,  2003).  Many 

infectiousdiseases  have  been  known  to  be  treated  with  herbal  remedies  throughout  the  history  of 

mankind.  Natural  products,  either  as  pure  compounds  or  as  standardized  plant  extracts,  provide 

unlimited opportunities for new drug leads because of the unmatched availability ofchemical diversity. 

There is a continuous and urgent need to discover new antimicrobial compounds with diversechemical 

structures  and  novel  mechanisms  of  action  for  new  and  re-emerging  infectious  diseases  (Rojas  et  al., 

1992).  Therefore,  researchers  are  increasingly  turning  their  attention  tolocal  herbs,  looking  for  new 

leads todevelop better drugs against microbial infections (Benkeblia, 2004).  

The increasingfailure of chemotherapeutics and antibiotic resistanceexhibited by pathogenic microbial 

infectious  agents  has  led  to  the screening  of  several  medicinal  plants  for their  potential  antimicrobial 

activity  (Kapila, 2005 ;Runyoro  et  al.,2006). The rising prevalence of  antibiotics  resistant pathogenic 

microorganisms raises the demand for finding new alternative antimicrobial agents. The drugs already 

in use to treat infectious diseaseare of concern because drug safety remains an enormous global issue. 

Most of the synthetic drugscause side effects and also most of the microbesdeveloped resistant against 

the synthetic drugs (Chanda and Rakholiya 2011). To alleviate this problem, antimicrobial compounds 

frompotential plants should be explored. These drugs fromplants are less toxic; side effects are scanty 

and  alsocost  effective.  They  are  effective  in  the  treatment  ofinfectious  diseases  while 

                                          1 

 simultaneouslymitigatingmany of the side effects that are often associated withsynthetic antimicrobials 

(Harishchandraet al., 2012). 

 Published studies in medical journals show that  coconut in one form or  another  may provide a  wide 

range  of  health  benefits.  The  coconut  plant Cocos  nucifera (family  Arecaceae)  is  considered  as  an 

important  fruit  crop  in  tropical  countries.  It  is  commonly  available  plant  with  wide  variety  of 

applications in food, drinks,  fibers, building  materials and various  chemicals finding  their way into a 

huge  range  of  modern  day  products.  Being  highly  nutritious  coconuts  have  also  been  studied  for 

medicinal qualities.  

Modern medical science is now confirming the  medicinal qualities of Cocos nucifera  which are  used 

for the treatment wide range of infections. Based on the knowledge of the traditional herbs used for the 

treatment  for  local  application,  coconut  husk  can  be  use  as  a  topical  antimicrobial.  As  preliminary 

investigation of the use of coconut husk, the antimicrobial activity can be evaluated.  

1.2 AIM AND OBJECTIVES 

The specific objectives are to: 

(a)  Evaluate  the  phytochemical  and  antimicrobial  activities  of  Methalonic  extract  of  young  Cocos 

nucifera husk on selected pathogenic microorganisms.  

(b)  Evaluate  the  antimicrobial  activities  andyoung  Cocos  nucifera water  on  selected  pathogenic 

microorganisms 

1.3 JUSTIFICATION OF THE RESEARCH 

Cocos nucifera husk and Cocos nucifera water are traditionally used in the treatment of wide variety of 

diseases,  it  has  been  used  from  time  immemorial  for  the  treatment  of  carcinogenic  infections.  This 

study scientifically justifies the use of young Coconut husk and young Coconut water in traditional folk 

medicine and to compare their antimicrobial potency with the commercial antibiotics. 

                                          2 

 1.4LITERATURE REVIEW 

1.4.1 MEDICINAL PLANTS AS ANTIMICROBIAL AGENT 

Medicinal  plants  have  always  been  considered  as  a  source  for  healthy  life  for  people.  Therapeutical 

properties  of  medical  plants  are  very  useful  in  healing  various  diseases  and  the  advantage  of  these 

medicinal plants are natural (Kalemba and Kunicka, 2003). In many parts of the world, medicinal plants 

have been used for its antibacterial, antifungal and antiviral activities for hundreds of years (Ali et al., 

1998; Barbour et al., 2004; Yasunakaet al., 2005).  Researchers are increasingly turning their attention 

to natural products and looking for new leads to develop better drugs against cancer, as well as viral and 

microbial  infections  (Ibrahim,  1997;  Towers et  al.,  2001;  Koshy et  al.,  2009).  Several  synthetic 

antibiotics  are  employed  in  the  treatment  of  infections  and  communicable  diseases.  The  harmful 

microorganisms  can  be  controlled  with  drugs  and  this  has  resulted  in  the  emergence  of  multiple  drug 

resistant bacteria and it has created alarming clinical situations in the treatment of infections.  

In general, bacteria have the genetic ability to transmit and acquire resistance to synthetic drugs which 

are  utilized  as  therapeutic  agents  (Murray,  1992;  Madunaguet  al.,  2001;  Koshy et  al.,  2009; 

Senthilkumar  and  Reetha, 2009)  Therefore,  actions  must  be  taken  to  reduce  this  problem,  such  as  to 

minimize the use of antibiotics, develop research of resistance among microorganism and to  continue 

studies to develop new antibiotic and immune modulating compounds with diverse chemical structures 

and  novel  mechanisms  of  action,  either  synthetic  or  natural  to  control  pathogenic  microorganisms 

because  there  has  also  been  an  alarming  increase  in  the  incidence  of  new  and  re-emerging  infectious 

diseases (Ikenebomeh and Metitiri, 1988; Rojas et al., 2003) 

Antimicrobial studies have shown that Gram-negative bacteria show a higher resistance to plant extracts 

than  Gram-positive  bacteria.  This  may  be  due  to  the  variation  in  the  cell  wall  structures  of  Gram-

positive and Gram-negative bacteria. More specifically, Gram-negative bacteria has an outer membrane 

that  is  composed  of  high  density  lipopolysaccharides  that  serves  as  a  barrier  to  many  environmental 

                                          3 

 substances including antibiotics (Paz et al., 1995; Vlietincket al., 1995; Kudiet al., 1999; Palombo and 

Semple,  2001).  Although  hundreds  of  plant  species  have  been  tested  for  antimicrobial  properties,  the 

vast majority of have not been adequately evaluated (Onwuliri and Dawang, 2006; Mahesh and Sathish, 

2008). 

The coconut (Cocos nucifera L. family Arecaceae) is a well distributed fruit tree all around the world, 

providing food, especially in the tropical and subtropical regions and for its many uses it is often called 

the “tree of life”. There are 12 different crops of nuts under the name of coconut palm (DebMandal and 

Mandal,  2011). Cocos  nucifera is  widely  distributed  over  the  Brazilian  northeastern  coast,  where  is 

known as “Coco-da-Bahia”. Popular medicinal uses (against arthritis and diarrhea) of coconut husk fiber 

have been reported (Rinaldi et al., 2009), but the knowledge of its potential benefit or adverse effects in 

human beings is still very preliminary.  

Coconut, Cocos nucifera, is a tree that is cultivated for its multiple utilities, mainly for its nutritional 

and  medicinal  values.    The  various  products  of  coconut  include  tender  coconut  water,copra,  coconut 

oil, raw kernel, coconut cake, coconut toddy, coconut shell and wood based products, coconut leaves, 

coir  pith  etc.  It’s  all  parts  are  used  in  some  way or  another  in  the  daily  life  of  the  people  in  the 

traditional  coconut  growing  areas.  It  is  the  unique  source  of  various  natural  products  for  the 

development of medicines against various diseases and also for the development of industrial products. 

The parts of its fruit like coconut husk and tender coconut water have numerous medicinal properties 

such as antibacterial, antifungal, antiviral, antiparasitic, antidermatophytic, antioxidant, hypoglycemic, 

hepatoprotective,  immunostimulant.  Coconut  water  and  coconut  kernel  contain  micro  minerals  and 

nutrients, which are essential to human health, and hence coconut is used as food by the peoples in the 

globe, mainly in the tropical countries. The coconut palm is, therefore, eulogizedas ‘Kalpavriksha’ (the 

all giving tree) in Indian classics. India is the third largest coconut producing country, after Indonesia 

and the Philippines, having an area of about 1.78 million hectares under the crop. Annual production is 

                                          4 

 about 7,562 million nuts with an average of 5 295 nuts/hectare (Rinaldi et al., 2009). In India, the four 

south  Indian  states  namely  Kerala,  Tamil  Nadu,  Karnataka  and  Andhra  Pradesh  account  for  around 

90%  of  the  coconut  production  in  the  country  (Rinaldi  et  al.,  2009).  For  thousands  of  years, 

coconutproducts  have  held  a  respected  and  valuable placein  Indianfolk  medicine.  It  is  believed  to  be 

antiblenorrhagic,  antibronchitis,  febrifugal,  and  antigingivitic.    In  Ayurvedic  medicine,  the  oil,  milk, 

cream and water of the coconut are all used to treat hair loss, burns and heart problems. In India, the 

use of coconut for food, and its applications in the Ayurvedic medicine were documented in Sanskrit 4 

000 years ago. Records show that in  the  United States, coconut  oil was  one of the major sources  of  

dietary  fats,  aside    from    dairy    and    animal  fats,    prior  to  the  advent  of  the  American  edible  oil 

(soybean  and corn)  industry in the  mid-1940s(Dayrit,2005). Virgin  coconut oil (VCO) is  completely 

non-toxic to humans, and is referred to as the “drugstore in a bottle”. In India, the coconut has religious 

connotations; it is described as “The fruit of aspiration” and a coconut is offered to the gods and cut at 

the start of many new projects. Coconut water is produced by a 5 month old nut that during World War 

II, was used in emergencies, and put directly into a patient’s veins. From ancient times the coconut is 

used as a very effective remedy for intestinal worms of all kinds.  Boiled toddy, known as jaggery, with 

lime  makes  a  good  cement.    Nutmeat  of  immature  coconuts  is  eaten  or  extracted  cream  is  used  on 

various foods.  

                                          5 

 1.4.2COCONUT WATER AS POTENTIAL ANTIMICROBIAL AGENTS 

Coconut  water  (coconut  liquid  endosperm),  with  its many  applications,  is  one  of  the  world’s  most 

versatile  natural  product.  This  refreshing  beverage  is  consumed  worldwide  as  it  is  nutritious  and 

beneficial for  health. There is increasing scientific evidence that supports the  role of coconut water in 

health and medicinal applications. Coconut water is traditionally used as a growth supplement in plant 

tissue culture/micro propagation. The wide applications of coconut water can be justified by its unique 

chemical composition of sugars, vitamins, minerals, amino acids and phytohormones. 

Coconut  water  is  a  natural  liquid  that  contains  many  biologically  active  compounds.  These  include 

numerous  antioxidant  compounds  that  have  the  ability  to  scavenge  free  radicals  in  the  body.  It  also 

contains cytokins, a plant chemical which has shown anti-aging and anti-carcinogenic effects. Coconut 

water also contains B vitamins, which are water soluble and are required for cellular functions (Jannick 

and  Paull,  2008).  Coconut  water  contains  a  variety of  inorganic  ions  such  as  calcium,  magnesium, 

phosphorus,  sodium,  potassium  and  selenium  (Patrick  and  Offler,  2001).  Further,  other  components 

found  in  coconut  water  include  sugars,  sugar  alcohols,  lipids,  amino  acids,  nitrogenous  compounds, 

organic acids and some enzymes.  

They play different functional roles in plant and human systems due their distinct chemical properties 

(Pummer et al, 2001). Many studies have shown that the antiviral, antibacterial, anti-inflammatory and 

antioxidant  activities  of  coconut  water  may  help  ease  a  number  of  minor  to  severe  health  conditions. 

This  nutrient  rich  drink  has  been  used  to  regulate blood  pressure,  blood  sugar,  and  cholesterol  levels, 

and it has been found to boost energy levels and increase metabolism in human body. Other conditions 

that  it  has  been  found  to  be  effective  in  treating include  stomach  flu,  dysentery,  indigestion, 

constipation, intestinal worms, urethra stones, malfunctioning kidneys, dry and itchy skins, age spot and 

wrinkles (Campbell-Falck, 2000). Similarly, some recent studies have found thatcoconut water can help 

                                          6 

 increase high density lipoprotein (good) cholesterol, which makes it a wonderful natural treatment for 

maintaining  good  cardiovascular  health.  Young  coconut  water  has  estrogens-like  characteristics.  It 

mixes easily with blood, and was used during World War II in emergency transfusions (Pummer et al, 

2001).  Coconut  water  can  also  serve  as  emergency  short-term  intravenous  hydration  fluid.  This  is 

possible because it contains a high level of sugar and other salts that make it possible to be used in the 

bloodstream,  much  like  the  modern  lactate  Ringer  Solution  or  a  dextrose/water  solution  as  an 

intravenous  solution  (Anurag  and  Rajamohan,  2003). In  Eastern  Nigeria,  coconut  water  is  used  for 

several  medicinal  purposes  which  include  management  and  treatment  of  various  disorders  such  as 

gastrointestinal  disorders,  high  blood  pressure,  dehydration,  kidney  malfunction,  anxiety,  etc. 

Glutathione peroxidase (GPX) is an enzyme which acts on lipid hydroperoxide (LHP) substrates that are 

released  from  membrane  phospholipids  by  phospholipaseA2.  It  can  utilize  cholesterol  hydroperoxide 

and hydrolyzes hydrogen peroxide (H

                              O) at low concentration (van Overbeek, 2007). The antioxidant 

                              22

enzyme,  GPX,  catalyze  the  reaction  of  HO  and  hydroperoxides  formed  from  fatty  acid,  thereby 

                                    22

effectively  removing  toxic  peroxides  from  living  cells.  It  plays  the  important  role  of  protecting  cells 

from  potential  damage  by  free  radicals,  formed  by  peroxide  decomposition  (Van  Overbeek  et  al., 

2007).Lipid peroxidation is an established mechanism of cellular injury, and is used as an indicator of 

oxidative  stress.  Polyunsaturated  fatty  acids  peroxides  generate  malondialdehyde  (MDA)  and  4-

hydroxyalkanals upon decomposition (Alleyne et al., 2005).  

Superoxide dismutase (SOD) decomposes superoxide anion into hydrogen peroxide and oxygen at very 

high  rates.  Superoxide  radical  is  involved  in  diverse  physiological  and  pathophysiological  processes 

(Alleyne et al., 2005). Lipid profile is a general term that is given to tests for high density lipoprotein, 

low density  lipoprotein,  total cholesterol  and triglycerides.  A shift  in  the  normal level of  any of  these 

components  of  lipid  profile  is  of  interest  to  cases  of  cardiovascular  disorders  (Mauney  et  al.,  2006). 

Documented scientific evidence on the various medicinal applications of coconut water has been scarce 

                                          7 

 in  this  part  of  the  world.  Hence,  the  present  study  investigated  the  antimicrobial  property  of  young 

coconut  water  on  pathogenic  microorganisms.  Coconut  water  has  been  extensively  studied  since  its 

introduction to the scientific community in the 1940s. In its natural form, it is a refreshing and nutritious 

beverage which is widely consumed due to its beneficial properties to health, some of which are based 

on  cultural/traditional  beliefs.  It  is  also  believed  that  coconut  water  could  be  used  as  an  important 

alternative  for  oral  rehydration  and  even  so  for  intravenous  hydration  of  patients  in  remote  regions 

(Mauney et al., 2006). Coconut water may also offer protection against myocardial infarction (Mauney 

et al., 2006).  

Interestingly,  a  study  has  shown  that  regular  consumption  of  either  coconut  water  or  mauby  (a  liquid 

extracted from the bark of the mauby tree, Colubrinaarborescens), or particularly, a mixture of them, is 

effective  in  bringing  about  the  control  of  hypertension  (Shaw  and  Srivastava,2004).  Apart  from  that, 

coconut water is widely used in the plant tissue culture industry. The extensive use of coconut water as a 

growth-promoting component in tissue culture medium formulation can be traced back to more than half 

a  century  ago,  when  Wayneet  al. first  introduced  coconut  water  as  a  new  component  of  the  nutrient 

medium for callus cultures in 1941 (Shaw and Srivastava,2004).  

 From a scientific viewpoint, the addition of coconut water to the medium is rather unsatisfactory, as it 

precludes the possibility for investigating the effects of individual components of the medium with any 

degree of accuracy. The question of which components cause the growth stimulation arose immediately. 

Besides  its  nutritional  role,  coconut  water  also  appears  to  have  growth  regulatory  properties,  e.g., 

cytokinin-type  activity  (Van  Overbeek,  2007).Some  of  the  most  significant  and  useful  components  in 

coconut  water  are  cytokinins,  which  are  a  class  of phytohormones  (Shaw  and  Srivastava,  2004).  The 

first  cytokinin, N6-furfuryladenine  (kinetin)  was  isolated  from  an  autoclaved  sample  of  herring  sperm 

DNA in 1955. In 1963, Letham isolated trans-zeatin, the first naturally-occurring cytokinin, from a plant 

source (unripe corn seeds) (Shaw and Srivastava, 2004). In addition to various plant-related functions, it 

                                          8 

 was also found that some cytokinins (e.g., kinetin and trans-zeatin) showed significant anti-ageing, anti-

carcinogenic,  and  anti-thrombotic  effects.  Furthermore,  micronutrients  (nutrients  needed  in  small 

quantities) such as inorganic ions  and vitamins in coconut water play a  vital role in aiding the human 

body  antioxidant  system.  Hyper  metabolism  gives  rise  to  an  increased  production  of  reactive  oxygen 

species (or  free radicals), as a result of increased oxidative metabolism.  Such increase in free radicals 

will cause oxidative damage to the various components of the human cell, especially the polyunsaturated 

fatty  acids  in  the  cell  membrane,  or  to  the  nucleic  acids  in  the  nucleus.  Fortunately,  living  organisms 

have  well  developed  antioxidant  systems  to  neutralize  the  most  detrimental  effects  of  these  oxidizing 

species. Micronutrients have important functions in this aspect. For example, they act directly to quench 

free  radicals  by  donating  electrons,  or  indirectly as  a  part  of  metallo  enzymes  (a  diverse  class  of 

enzymes  that  require  a  catalytic  metal  ion  for  their  biological  activity)  such  as  glutathione  peroxidase 

(selenium) or superoxide dismutase (zinc, copper) to catalyse the removal of oxidizing species. 

1.4.3COCONUT HUSKAS POTENTIAL ANTIMICROBIAL AGENTS 

The husk fibers of coconut (Cocos nucifera) are reported to be used by people of rural areas of South 

India  for  daily  cleaning  their  teeth.  A  thorough  review  of  literature  has  revealed  few  studies  on 

beneficial  effects  of  husk  of C.  nucifera  namely,  antibacterial  activity  against Vibrio  species  [4]  and 

Staphylococcus  aureus,(Campbell-Falck,2000)antileishmanial(Pummer  et  al  ,2001)  and 

antitumoral(Anurag  and  Rajamohan,2003)  properties. Studies  conducted  by  Alvianoet  al  have  also 

suggested in  vivo  and in  vitro  analgesic  and  free  radical  scavenging  properties  of  this  plant  material. 

(Van  Overbeek,2007)  It  is  reported  that  certain  plants  like C.  nucifera  were  used  as  teeth  blackening 

agents by tribal population of Asia and suggested that  this form of bodily  inscription made a positive 

contribution  to  health  status  in  these  population  due  to  the  antimicrobial  properties  of  this  plant. 

(VanOverbeek  et  al.,  2007)Although  coconut  husks  have  been  used  for  maintaining  oral  hygiene  for 

many years, there is no scientific evidence for the beneficial effects of this plant material, with respect to 

                                          9 

 antimicrobial properties against common cariogenic bacteria. Therefore, the present study was designed 

to find scientific evidence on valuable effects of this traditional practice. Previous studies showed that 

aqueous C.  nucifera husk  fiber  extracts  present  important  biological  activities  such  as  antimicrobial, 

antiviral, antinociceptive, anti-inflammatory, antioxidant and antineoplasic properties (Esquenazi et al., 

2002; Alviano et al., 2004; Rinaldi et al., 2009). Coconut husk fiber is rich in polyphenolic compounds. 

The C.  nucifera husk  fiber  aqueous  extracts  are  mainly  composed  by catechin,  epicatechin  and 

condensed tannins (B-type procyanidins) (Esquenazi et al., 2002). Plant phenols represent an important 

group of natural antioxidants and some of them are potent antimicrobial compounds (Chakraborty and 

Mitra,  2008).  In  general,  polyphenols  can  prevent  chronic  diseases  by  their  antioxidant,  free  radical 

scavenger and metal chelator properties (Daglia, 2012). 

The industrial use of this plant  generates large amounts of husk fiber as  industrial reject,  featuring  an 

environmental problem. continuous interest in searching for medicinal plants with antimicrobial activity 

and  in  expanding  the  knowledge  about  the  phytochemical  profile  of C.  nucifera,  the  purpose  of  this 

study  was  to  investigate  the  antimicrobial  activity  of  methalonic  extract  of  the  husk  fiber  of  the C. 

nuciferaand C.  nucifera  wateragainst  bacteria  (Staphylococcus  aureus, Salmonella  typhii,Escherichia 

coli,Proteus  mirabilis  ,Steptococcushaemolyticus,Streptococcus  faecalis,  Pseudomonas  aerugenosa, 

Pseudomonas  aerugenosa(ATCC  29853),  Staphylococcus  aureus(NCIB  950),  Escherichia  coli(ATCC 

35218) and fungi (Candida albican, Aspergillus flavus and Aspergillus niger).  

                                          10 

 1.4.4 PHYTOCHEMICAL PROPERTIES OF MEDICINAL PLANTS 

1.4.4.1 SAPONINS 

Saponins  are  steroids  and  triterpene  glycosides.  They  are  called  as  saponins  due  to  their  soaplike 

properties.  Saponins  possess  anti-ulcer,  anti-tumor  and  anti-diabetic  properties.  Four  saponins, 

bugbanosides  have  been  isolated  from Cimifuga  simplex.Solanine  is  an  example  of  saponins  found  in 

family Solanaceae, such as thepotato(Solanumtuberosum) and has fungicidaland pesticidalproperties and 

was firstisolated in 1820.A number of studieshave shown saponins to have inhibitory effects onprotozoa. 

Saponins  from Quillajasaponariaand Acaciaauriculoformiswere  found  to  be  antiprotozoal in-vitro 

withbutanol as the main active component (Wallace, 2004). 

ImageFigure 1: Chemical structure of Saponin 

                                          11 

1.4.4.2 TANNINS 

Tannins  are  biologically  active  compounds  having  diverse  antimicrobial  actions.  Tannins  have  wide 

applications in food, pharmaceutical and leather industries. Tannic acid is the example of gallotannins 

that  is  hydrolysable.  It  is  extracted  fromthe  roots  and  fruits  of Rhustrilobata. Tannic  acid  has 

antibacterial,antidermatotic, antihemorrhoidal, antiseptic, astringent, antiulcer and antiviral properties. It 

also  has  well-described  antimutagenic  and  antioxidantactivities  (Wallace,  2004).  The  mechanism  of 

action  of  tannin  includes:  Protein  binding,  adhesin  binding,  enzyme  inhibition,  ssubstrate  deprivation, 

ccomplex with cell wall, mmembrane disruption, metal-ion complexation. (Cowan, 1999) 

ImageImageImage 

ImageFigure 2: Chemical structure of Tannin 

                                          12 

 1.4.4.3 QUINONES 

Aromatic rings that have two ketone groups are known as Quinones. An anthraquinone wasisolated from 

Cassia italica, which inhibited the growth of Bacillusanthracis, Cynebactericimpseudodiphthericumand 

Pseudomonas  aerugenosa. Anantifungal  naphtaquinone  has  been  isolated  from  the 

Swertiacalycina.Hypericinis  an  anthraquinone  that  was  extracted  from  Hypericumperforatum.  Itgained 

popularity  as  an  anti-depressant  and  it  had  general  antimicrobial  properties(Wallace,  2004).The 

mechanism of action includes: Adhesin binding, complex with cell wall,enzyme inactivation. (Cowan, 

1999). 

ImageImageImage 

ImageFigure 3: Chemical structure of Quinones 

                                          13 

 1.4.4.4 FLAVONOIDS 

Flavonoids are the largest group of polyphenolic compounds. They are widely distributedthroughout the 

plant  kingdom.  There  are  four  major  groups  of  flavonoids,  anthocyaninsflavones,  flavonols  and 

isoflavones.Genistein  is  one  of  several  known  isoflavones.  It  is  found  in  a  number  of  plantsincluding 

lupin,  fava  beansand Flemingiavestita.  Various  studiesdemonstrated  that  moderate  doses  of  genistein 

has  inhibitory  effects  on  cancers  of  the  prostate, cervical,  brain  and  breast(Wallace,  2004).  The 

mechanism of action is adhesin binding (Cowan, 1999) 

ImageImage 

ImageFigure 4: Chemical structure of Flavonoid 

                                          14 

 1.4.4.5 ALKALOIDS 

Alkaloids are heterocyclic nitrogenous compounds . The first useful alkaloid frommedicinal point of view 

was morphine.  It was isolated in 1805 from poppy plant Papaversomnife. Alkaloids  have  antimicrobial 

properties. The tropane alkaloids have been isolated from leaves ofErythroxylum mooni, a medicinal plant 

from Sri Lanka, which display broad spectrumantifungal activity(Wallace, 2004). Alkaloid mechanism of 

action incude: Intercalation into cell wall and/or DNA. (Cowan, 1999). 

Image 

ImageFigure 5:  Chemical structure of Alkaloid 

                                          15 

1.4.4.6 PHENOLICS AND POLYPHENOLS 

Plants are able to make a wide range of aromatic compounds, more common among them arephenols or 

their  derivatives  having  oxygen  substitution  .Vanillic  acid  has  been  extracted  from  the 

Aristolochiamollissima.  Vanillic  acid  hasantioxidant  properties  and  hence  is  useful  against  cancer. 

Caffeic  acid  ispresent  in  common  herbstarragon  and thyme  which  is  effective  against  all  types 

ofmicroorganisms. Cinnamicacid obtained from oil of cinnamon, or from balsamsand catechol present in 

the juice ofMimosa catechu are also the examples of phenolic compounds derived from plants(Wallace, 

2004). 

Image 

Image 

Figure 6: Chemical Structure of Phenolics (Catechol) 

                                          16 

1.4.5 BACTERIA INFECTIONS 

1.4.5.1 STAPHYLOCOCCUS AUREUS  

Staphylococcus  aureus causes boils, styes, pustules, impetigo, infections  of wounds (cross infections), 

ulcers  and  burns,  osteomyelitis,  mastitis,  septicaemia,  meningitis,  pneumonia,  and  pleular  empyema. 

Also,  included  are  toxic  food-poisoning  (rapid  onset  on  fever),  toxic  shock  syndrome  and  toxic  skin 

exfoliation  (Lowy,  2003).  According  to  Cheesbrough (2000), Staphylococcus  aureusis  carried  in  the 

nose  of  40%  or  more  of  healthy  people.  It  is  a  pathogen  of  great  concern  because  of  its  intrinsic 

virulence, its ability to cause  a diverse array of life-threatening infections, and its capacity to adapt to 

different  environmental  conditions  (Lowy,  2003).  The  mortality  of Staphylococcus  aureusbacteremia 

remains approximately 20–40% despite the availability of effective antimicrobials (Lowy, 2003) and it 

is now the leading overall cause of nosocomial infections. 

1.4.5.2 PSEUDOMONAS AERUGENOSA  

Pseudomonas aerugenosa is an opportunistic human pathogen associated with nosocomial infections of 

immunocompromised  individuals  as  a  result  of  burns or  other  severe  trauma,  underlying  diseases, 

including  cancer,  diabetes  and  cystic  fibrosis  (CF),  deliberate  immunosuppression  and  major  surgery 

(Poole,  2001). Pseudomonas  aeruginosacauses  urinary  tract  infections,  respiratory  system  infections, 

dermatitis,  soft  tissue  infections,  bacteremia  and a  variety  of  systemic  infections.  Infections  are  often 

difficult  to  eradicate  due  to Pseudomonas  aeruginosabeing  resistant  to  many  antimicrobials 

(Cheesbrough,  2000)  and  this  intrinsic  resistance  has  long  been  attributed  to  the  outer  membrane,  a 

barrier  of  limited  permeability  (Poole,  2001).  A  study  on  the  resistance  of Pseudomonas 

aeruginosaisolates from pus samples obtained from wound of patients in Enugu and Abakaliki using the 

paper  disc  diffusion  technique  showed  that,  out  of fifty  pus  samples  screened,  34(64%)  yielded 

                                          17 

 Pseudomonas aeruginosa(Amadiet al., 2009). The sensitivity of the Pseudomonas aeruginosawas then 

investigated  using  amoxycillin,  co-trimoxazole,  streptomycin,  gentamicin,  chloramphenicol  and 

ciprofloxacin and the highest resistance obtained was recorded for amoxycillin (88.2%), followed by co-

trimoxazole  (76.5%),  streptomycin  (67.6%),  gentamicin  (58.8%),  chloramphenicol  (58.8%)  and 

ciprofloxacin (23.5%) (Amadiet al., 2009). 

1.4.5.3 SALMONELLA TYPHI   

Typhoid  fever  is  a  life-threatening  illness  caused by  the  bacterium Salmonella  typhithat  lives  only  in 

humans. Typhoid fever remains a serious health threat especially in 19 developing countries where it is 

estimated  that  over  20  million  cases  occur  annually  resulting  in  greater  than700,000  deaths  globally. 

Persons with typhoid fever carry the bacteria in their bloodstream and intestinal tract. A small number of 

persons who recover from typhoid fever remain carriers of the bacteria. In both cases, S. typhiare shed in 

the faeces (Cheesbrough, 2000). It has been a major human pathogen for thousands of years, thriving in 

conditions of poor sanitation, crowding, and social chaos (Bruschet al., 2010). The antibiotic of choice 

for many  years was  chloramphenicol, but like many pathogens, chloramphenicol-resistant strains have 

emerged.  In  addition,  many  strains  have  developed  resistance  to  ampicillin  and 

trimethoprim/sulfamethoxazole,  which  are  considered  appropriate  alternatives  to  chloramphenicol 

(Mills-Robertson et al., 2002). In a study by Mills-Robertson et al., (2003), 30 strains of bacteria out of 

a total of 58 isolates (52%) exhibited multiple drug resistance (MDR) with 10 strains being resistant to 

all three first line antibiotics. 

                                          18 

1.4.5.4 ESCHERICHIA COLI  

Escherichia coli is one of the main causes of nosocomial infections in humans (Oloweet al., 2008). It is 

naturally  found  in  the  intestinal  tract,  in  soil  and  water. Escherichia  colicauses  infections  of  wounds, 

peritonitis, sepsis, endotoxin induced shock, diarrhoeal disease, meningitis and bacteraemia in neonates 

and it is also the commonest pathogen isolated from patients with cystitis with recurring infections being 

common in women (Cheesbrough, 2000). The organism is of clinical importance due to its cosmopolitan 

nature and ability to initiate, establish and cause various kinds of infections (Oloweet al., 2003). It is one 

of  the  organisms  most  20  frequently  isolated  from  different  clinical  cases  of  diarrhoea  and  others 

(Okekeet  al.,  1999;  Oloweet  al.,  2003).  A  study  by  Oloweet  al.,  (2008)  demonstrated Escherichia 

colimulti-drug  resistance  in  isolates  from  clinical  samples  obtained  from  patients  at  LadokeAkintola 

University Teaching Hospital, Osogbo, Osun State, Nigeria. Seven antimicrobials were used during the 

study  and  the  prevalence  of  strains  resistant  to  antimicrobials  were;  Tetracycline  (91.6%),  Ampicillin 

(86.7%),  Sulphnamide  (77.8%)  and  Gentamicin  and  Nalidixic  acid  which  were  (39.3%)  and  (4.1%) 

respectively. A total of seven antibiotic resistance profiles were obtained with over 64% of the isolates 

showing  multi-drug  resistance.  The  isolates  with  high  multi-drug  resistance  profiles  were  found  to 

possess multiple plasmids with large sizes in the range less than 6–25 kb. Very large resistance levels 

greater than 85% were detected against Tetracycline, Sulphnamide, and Cotrimoxazole while Nalidixic 

acid  showed  least  resistance  of  4.1%  among  the  isolates  (Oloweet  al.,  2008).  Majority  of  the  isolates 

were positive for betalactamase production when subjected to starch paper method (Oloweet al., 2008). 

.