ENHANCED OIL RECOVERY IN HIGH VISCOUS RESERVOIR USING THE THERMAL PROCESS


ENHANCED OIL RECOVERY IN HIGH VISCOUS RESERVOIR USING THE THERMAL PROCESS  

ABSTRACT

New sources of energy should be found to relieve the high demand of energy. Even though heavy oil and bitumen are difficult to produce due to their high viscosity which can be reduced by heating, with increased oil price, the production of these heavy oils are seen viable thus the need for a model that would help make predictions for the future and also take into consideration areal and vertical sweep of hydrocarbons (3D simulator). The ability to be able to optimize the interaction data and decision making during the life cycle of the field is critical. As a result of a heterogeneity of reservoirs, numerical simulators are used to obtain consistent and significant solutions.

For this work, a three-dimensional numerical reservoir simulator is developed for an expansion drive with a high viscous oil. A transient state heat system by conduction with an internal heat source is considered. A temperature simulator is first developed then coupled with a viscosity correlation after which it is then coupled with a diffusivity equation for a single phase flow of an expansion drive reservoir. All the governing equations are discretized using finite difference technique; iterative linear solver with the aid of MATLAB code is used to solve the system of linear equations.

This work aims to look at the effect of temperature on pressure drop through viscosity. It is realized that an increase in the heat source introduced a rise in temperature which in turn decrease the viscosity across the system. The pressure across the system is seen to be sustained even though it is declining thus the pressure being maintained

TABLE OF CONTENTS

ABSTRACT 3

ACKNOWLEDGEMENT 4

DEDICATION 5

TABLE OF CONTENTS 6

LIST OF FIGURES 8

CHAPTER ONE 11

INTRODUCTION 11

General Introduction11

Problem definition13

Objectives13

Scope and limitation of this work14

Organization of thesis14

CHAPTER TWO 16

LITERATURE REVIEW 16

Natural Drive Mechanism16

Enhanced Oil Recovery Methods17

Numerical Reservoir Simulation21

Numerical Methods23

Linear Solvers in Reservoir Simulators25

MATLAB Programming27

CHAPTER THREE 29

METHOD USED 29

Development of the Simulator29

Heat Model30

Viscosity Correlation40

Pressure Model41

CHAPTER FOUR 58

RESULTS AND DISCUSSIONS 58

Base Case Scenario58

Thermal Process59

Sensitivity Analysis76

CHAPTER FIVE 79

CONCLUSION AND RECCOMMENDATION 79

Conclusion79

Recommendations79

REFERENCES 81

NOMENCLATURE 83

LIST OF FIGURES

Figure 2.2: A Diagram showing EOR Methods. 20

Figure 2.3.1: Schematic diagram of the numerical reservoir simulation process. 21

Figure 2.3.2: A schematic Diagram of reservoir models based on dimension. 23

Figure 2.5.1: Schematic diagram of steps involving direct solution method. 25

Figure 2.5.2: A Schematic Representation of the iterative solution method. 26

Figure 3.1: A numerical stencil for a three-dimensional oil reservoir block 30

Figure 3.2.1: A diagrammatic representation of conduction. 30

Figure 3.2.2: A diagrammatic representation of the volumetric system. 31

Figure 3.4: MATLAB sequential process algorithm. 56

Figure 4.1: A plot of Pressure (Pav, Pwf) versus Time. 58

Figure 4.2.1: A plot of Temperature (Twf)) versus Time. 59

Figure 4.2.2: A plot of Temperature (Twf, TAB, Tin, Tjac) versus Time. 60

Figure 4.2.3: Surface plot of reservoir temperature distribution after 1 day. 61

Figure 4.2.4: Surface plot of reservoir temperature distribution after 10 days. 61

Figure 4.2.5: Surface plot of reservoir temperature distribution after 60 days. 62

Figure 4.2.6: Surface plot of reservoir temperature distribution after 120 days. 62

Figure 4.2.7: Surface plot of reservoir temperature distribution after 180 days. 63

Figure 4.2.8: Surface plot of reservoir temperature distribution after 240 days. 63

Figure 4.2.9: Surface plot of reservoir temperature distribution after 300 days. 64

Figure 4.2.10: Surface plot of reservoir temperature distribution after 365 days. 64

Figure 4.2.11: A plot of Viscosity (Vwf) versus Time. 65

Figure 4.2.12: A plot of Viscosity (Vwf, Vjac, Vin, VAB) versus Time. 66

Figure 4.2.13: Surface plot of viscosity distribution after 1 day. 66

Figure 4.2.14: Surface plot of viscosity distribution after 10 days. 67

Figure 4.2.15: Surface plot of viscosity distribution after 60 days. 67

Figure 4.2.16: Surface plot of viscosity distribution after 120 days. 68

Figure 4.2.17: Surface plot of viscosity distribution after 180 days. 68

Figure 4.2.18: Surface plot of viscosity distribution after 240 days. 69

Figure 4.2.19: Surface plot of viscosity distribution after 300 days. 69

Figure 4.2.20: Surface plot of viscosity distribution after 365 days. 70

Figure 4.2.21: A plot of Pressure (Pwf, Pav) versus Time. 71

Figure 4.2.22: A plot of Pressure (Pwfb, Pwft) versus Time. 71

Figure 4.2.23: A plot of Pressure (Pwf, Pin, PAB, Pav, Pjac) versus Time. 72

Figure 4.2.24: Surface plot of pressure distribution after 1 day. 72

Figure 4.2.25: Surface plot of pressure distribution after 10 days. 73

Figure 4.2.26: Surface plot of pressure distribution after 60 days. 73

Figure 4.2.27: Surface plot of pressure distribution after 120 days. 74

Figure 4.2.28: Surface plot of pressure distribution after 180 days. 74

Figure 4.2.29: Surface plot of pressure distribution after 240 days. 75

Figure 4.2.30: Surface plot of pressure distribution after 300 days. 75

Figure 4.2.31: Surface plot of pressure distribution after 365 days. 76

Figure 4.3.1: The Effect of varying Heat Source on Reservoir Temperature. 77

Figure 4.3.2: The Effect of varying Heat Source on Reservoir Viscosity. 77

Figure 4.3.3: The Effect of varying Heat Source on Reservoir Pressure. 78

CHAPTER ONE

INTRODUCTION

General Introduction

Reservoirs act differently due to varying range of both rock and fluid properties and thus must be treated uniquely. During production, reservoirs are allowed to naturally produce their hydrocarbons until when production rates are mostly not economical viable then other support systems are used. Primary recovery is the natural stage of the reservoir to be able to produce without support thus depending on reservoir’s internal energy. There are different drive mechanisms known as a results of different energy sources. The drive mechanism of a reservoir is not known in the earlier life of the production but can be seen from production data with time. The knowledge about the reservoir’s drive mechanism can help improve reserves recovery and supervision during its middle and later life. The important drive mechanisms include: Rock and liquid expansion drive, solution gas/ depletion drive, Gas cap drive, Water drive, Combination drive and Gravity drainage drive.

Rock and liquid expansion drive has its oil existing at a higher pressure than the bubble point pressure and with only oil, connate water and the rocks. The rock and fluids expand as a result of their different compressibility as the reservoir pressure deplete. Formation compaction and expansion of different rock grains are some factors that affect reservoir rock compressibility. These factors are due to decrease of fluid pressure within the pore spaces which in turn reduce pore volume through porosity reduction. While the pore volume is reducing, the crude oil and water will be forced out of the pore space to the wellbore. Due to the compressibility (slightly) of both liquids and rocks, the reservoir will experience a rapid pressure decline. A constant gas-oil ratio

equal to gas solubility at bubble point pressure is typical of this drive mechanism. A small percentage of total oil in place is recovered due to the less efficiency of this drive.

Other recovery methods like Secondary and tertiary (Enhanced) recovery methods are employed to help improve the recovery of the remaining hydrocarbons by providing additional or sustaining the energy. The efficiency of an enhanced recovery method is a measure of its ability to provide greater hydrocarbon recovery than by natural depletion at economically attractive production rate (Marcel et al. 1980). It depends on reservoir characteristics and nature of displacing and displaced fluids. Enhanced recovery methods seeks to improve the sweep and displacement efficiency. It has been basically grouped into three types; namely chemical processes, miscible displacement processes and thermal processes. Thermal processes seeks to lower the viscosity of the fluid in place thus improving displacement and some of the processes are steam flooding and in-situ combustion. In order to manage and predict the performance of high viscous oil reservoir which is being heated using a heat probe, numerical reservoir simulation is needed thus the need for a three-dimensional numerical simulator for high viscous oil reservoir.

Reservoir simulation is the art of relating mathematics, physics, reservoir engineering, and computer encoding to predict hydrocarbon reservoir performance under different operating approaches (Aziz, K. and Settari, A. 1979).

Petroleum reservoir simulation is an approach whereby mathematical equations (model) or computable procedure are employed to infer the behavior of the real reservoir.

It is possible to obtain an exact solution for a few problems by direct integration of the differential equation (analytical solution). However, when analytical solutions breakdown, simple approximate methods (numerical solutions) are employed.

Today, numerical reservoir simulation is regularly used as a valuable tool to help make investment decisions on major exploitation and development projects. These decisions include determining commerciality, optimizing field development plans and initiating secondary and enhanced oil recovery methods on major oil and gas projects. Proper planning is made possible by use of reservoir simulation; it can be used effectively in the early stages of development before the pool is placed on production so that unnecessary expenditures can be avoided.

Problem definition

Heavy oil reservoirs cannot be easily produced due to their high viscosities which in turn inhibit mobility of hydrocarbons therefore enhanced oil recovery like thermal recovery method is employed to help decrease the viscosity drag effect of the hydrocarbons. These recovery methods are capital intensive and as such need intensive studies and forecast about their outcomes therefore the need for a numerical reservoir simulator which can be one-dimensional (1-D), two-dimensional (2-D) and three-dimensional (3-D). With the 3-D model, it gives full description of the real situation by accounting for both areal and vertical sweep efficiencies which neither 1-D nor 2-D models can give thus the need for a 3-D numerical simulator for high viscous oil reservoir.

Objectives

Below are the outlined objectives for the work:

· To derive and solve a heat equation for conduction with a heat source using finite difference method.

· Using a viscosity correlation, predict the viscosity dependence on temperature for a high viscous volumetric oil reservoir.

· To derive and solve diffusivity equation for single phase flow using finite difference method.

· To develop a 3-D numerical simulator for high viscous oil reservoir combining the heat, viscosity and diffusivity equations using MATLAB.

· To use the developed simulator to predict temperature distribution and pressure decline.

Scope and limitation of this work

This work is limited to (the development of a numerical simulator for) heavy oil reservoir with expansion drive as it primary drive for recovery.

Organization of thesis

The thesis is structured in this manner:

· Chapter two gives a brief evaluation of drive mechanisms, enhanced oil recovery and thermal recovery. Numerical reservoir simulation and numerical methods for discretization of the equations governing heat transfer and flow in subsurface reservoirs, including benefits and limitations of finite difference method are reviewed. Also in review is simple iterative method and use of MATLAB programming in reservoir simulation.

· Chapter three presents the methodology employed in this study; mathematical, numerical and computer models formulations.

· In Chapter four contains the discussion of the results.

· Chapter five draws logical conclusions based on the simulator results, and makes useful recommendations for further studies.

CHAPTER TWO

LITERATURE REVIEW

Natural Drive Mechanism

Each reservoir is composed of a unique combination of geometric form, geological rock properties, fluid characteristics, and drive mechanism (primary). The recovery of oil by any of the natural drive mechanisms is called primary recovery thus no energy supplement. Although no two reservoirs are identical in all aspects, they can be grouped according to the primary recovery mechanism by which they produce (Ahmed 2006). There are basically six driving mechanisms that provide the natural energy necessary for oil recovery:

· Depletion drive (This type of drive has its main source of energy being due to gas liberation from the crude oil and expansion of the solution gas as the reservoir pressure is reduced.)

· Gas cap drive (This drive is identified by the presence of a gas cap with little or no water drive. The reservoir pressure decline is slow due to the ability of the gas to expand.)

· Water drive (Most reservoirs are bounded on a portion or all the edges by water bearing rocks called aquifers. These aquifers help provide energy to push the hydrocarbons. There are bottom water and edge water occurring in this drive.)

· Gravity drainage drive (This drive is as result of differences in densities of the reservoir fluids)

· Combination drive (This drive can chain two or more of the above drives)

.

ENHANCED OIL RECOVERY IN HIGH VISCOUS RESERVOIR USING THE THERMAL PROCESS



TYPE IN YOUR TOPIC AND CLICK SEARCH.






RESEARCHWAP.ORG
Researchwap.org is an online repository for free project topics and research materials, articles and custom writing of research works. We’re an online resource centre that provides a vast database for students to access numerous research project topics and materials. Researchwap.org guides and assist Postgraduate, Undergraduate and Final Year Students with well researched and quality project topics, topic ideas, research guides and project materials. We’re reliable and trustworthy, and we really understand what is called “time factor”, that is why we’ve simplified the process so that students can get their research projects ready on time. Our platform provides more educational services, such as hiring a writer, research analysis, and software for computer science research and we also seriously adhere to a timely delivery.

TESTIMONIES FROM OUR CLIENTS


Please feel free to carefully review some written and captured responses from our satisfied clients.

  • "Exceptionally outstanding. Highly recommend for all who wish to have effective and excellent project defence. Easily Accessable, Affordable, Effective and effective."

    Debby Henry George, Massachusetts Institute of Technology (MIT), Cambridge, USA.
  • "I saw this website on facebook page and I did not even bother since I was in a hurry to complete my project. But I am totally amazed that when I visited the website and saw the topic I was looking for and I decided to give a try and now I have received it within an hour after ordering the material. Am grateful guys!"

    Hilary Yusuf, United States International University Africa, Nairobi, Kenya.
  • "Researchwap.org is a website I recommend to all student and researchers within and outside the country. The web owners are doing great job and I appreciate them for that. Once again, thank you very much "researchwap.org" and God bless you and your business! ."

    Debby Henry George, Massachusetts Institute of Technology (MIT), Cambridge, USA.
  • "Great User Experience, Nice flows and Superb functionalities.The app is indeed a great tech innovation for greasing the wheels of final year, research and other pedagogical related project works. A trial would definitely convince you."

    Lamilare Valentine, Kwame Nkrumah University, Kumasi, Ghana.
  • "I love what you guys are doing, your material guided me well through my research. Thank you for helping me achieve academic success."

    Sampson, University of Nigeria, Nsukka.
  • "researchwap.com is God-sent! I got good grades in my seminar and project with the help of your service, thank you soooooo much."

    Cynthia, Akwa Ibom State University .
  • "Sorry, it was in my spam folder all along, I should have looked it up properly first. Please keep up the good work, your team is quite commited. Am grateful...I will certainly refer my friends too."

    Elizabeth, Obafemi Awolowo University
  • "Am happy the defense went well, thanks to your articles. I may not be able to express how grateful I am for all your assistance, but on my honour, I owe you guys a good number of referrals. Thank you once again."

    Ali Olanrewaju, Lagos State University.
  • "My Dear Researchwap, initially I never believed one can actually do honest business transactions with Nigerians online until i stumbled into your website. You have broken a new legacy of record as far as am concerned. Keep up the good work!"

    Willie Ekereobong, University of Port Harcourt.
  • "WOW, SO IT'S TRUE??!! I can't believe I got this quality work for just 3k...I thought it was scam ooo. I wouldn't mind if it goes for over 5k, its worth it. Thank you!"

    Theressa, Igbinedion University.
  • "I did not see my project topic on your website so I decided to call your customer care number, the attention I got was epic! I got help from the beginning to the end of my project in just 3 days, they even taught me how to defend my project and I got a 'B' at the end. Thank you so much researchwap.com, infact, I owe my graduating well today to you guys...."

    Joseph, Abia state Polytechnic.
  • "My friend told me about ResearchWap website, I doubted her until I saw her receive her full project in less than 15 miniutes, I tried mine too and got it same, right now, am telling everyone in my school about researchwap.com, no one has to suffer any more writing their project. Thank you for making life easy for me and my fellow students... Keep up the good work"

    Christiana, Landmark University .
  • "I wish I knew you guys when I wrote my first degree project, it took so much time and effort then. Now, with just a click of a button, I got my complete project in less than 15 minutes. You guys are too amazing!."

    Musa, Federal University of Technology Minna
  • "I was scared at first when I saw your website but I decided to risk my last 3k and surprisingly I got my complete project in my email box instantly. This is so nice!!!."

    Ali Obafemi, Ibrahim Badamasi Babangida University, Niger State.
  • To contribute to our success story, send us a feedback or please kindly call 2348037664978.
    Then your comment and contact will be published here also with your consent.

    Thank you for choosing researchwap.com.