DESIGN AND CONSTRUCTION OF DUAL–POWERED HEAT TREATMENT FURNACE


DESIGN AND CONSTRUCTION OF DUAL-POWERED HEAT TREATMENT FURNACE 

ABSTRACT

The  Importance  of  materials  in  industries  cannot  be  overemphasized  in  the  recent

advancement of material development  for automobiles, aerospace, oil and gas industry, etc.

as it has been found to be a veritable tool in improving specific desired properties of metals.

The exorbitant cost of heat treatment furnace which is mainly attributed to its imported nature

has been responsible for its dearth in the material science laboratory of our Universities. The

epileptic nature of power supply in  country has also made it imperative to look inward and

develop  an  alternate  power  source  for  furnaces  in  use  in  the  university.  As  the  country

expends  so  much  of  her  wealth  on  importation  and  equally  clamouring  for  more  local

content, it is imperative that Engineers in Training and Engineers come up with solutions to

the  national  problem. This  work  was  aimed  at  designing  and  constructing  a  dual  powered

heat treatment furnace for the Department of Mechanical Engineering Laboratory, University

of Ibadan.

After  extensive  literature  review,  Gas  was  settled  for as  the  alternate  power  source for

electricity due to its relative availability. Having made conceptual designs using SolidWorks,

the  most  viable  design  was  selected  with  decision  matrix.  Design  Calculations  were  made

with mild  steel  considered  as  the  charge  material  as  it  is  the  most  available  ferrous  metal/

alloy. The minimum insulation thickness, adiabatic flame temperature of butane, and heat of

combustion were calculated  Chrome steel  was used as the crucible due to  its high melting

point and especially its passivation ability. The Crucible was designed to be a truncated cone

to allow for circulation of hot combustion gases. The final design has a wall thickness of 46

mm;  made  up  of  an  outer  shell  thickness  of  2  mm  steel  plate,  a  Fire  Clay -Kaolin  based

Insulation thickness of 44mm.A furnace height of 402 mm was generated.

 The design and construction of a dual powered heat treatment furnace using the adopted

methodology was achieved. Upon Testing, the constructed heat treatment furnace which has

the capacity of 0.00675 m3 capable of containing 53.06 kg of mild steel, attained a

temperature of 400 C in 11 minutes, thus an average heating rate of 36.3 C/ min while

powered using a blower based gas burner and an average heating rate of 5.3 C/ min while

powered by electricity, the furnace has the ability to switch power source in case of

unavailability of electricity and back to electricity in case of restoration. Furnace lost energy

can be recovered through recuperation. The furnace which can be used to heat treat ferrous

and non ferrous metals alike can be adapted for melting as the crucible is positioned in a

vertical direction.

In  this  project  work,  the design  and  construction  of a  dual  powered  heat  treatment furnace

using locally available  materials  for the Department of Mechanical  Engineering  Laboratory

has been achieved and its performance evaluation carried out.

TABLE OF CONTENTS

ABSTRACT .................................................................................................................................... i

ACKNOWLEDGEMENT ............................................................................................................... iii

DEDICATION .............................................................................................................................. vi

TABLE OF CONTENTS.................................................................................................................. v

LIST OF FIGURES ....................................................................... Error! Bookmark not defined.ix

LIST OF TABLES ......................................................................... Error! Bookmark not defined.xi

INTRODUCTION ........................................................................................................................ 13

1.0  BACKGROUND STUDY ................................................................................................... 13

1.1 TYPES OF HEAT TREATMENT FURNACE ........................................................ 14

     1.2 Components of a furnace: ............................................................................................ 15

     1.3 STATEMENT OF PROBLEM ............................................................................................ 16

1.4 OBJECTIVES ........................................................................................................... 17

1.5 SCOPE OF STUDY .................................................................................................. 17

1.6 JUSTIFICATION ...................................................................................................... 17

1.7 EXPECTED CONTRIBUTION ............................................................................... 18

1.8 ORGANIZATION OF STUDY ................................................................................ 18

CHAPTER TWO ......................................................................................................................... 19

2.0   LITERATURE REVIEW ................................................................................................ 19

 2.1           Types of Heat Treatment Furnace ................................................................... 21

2.1.1   Solar Heat treatment Furnace .................................................................................... 21

2.1.2     Electric Heat treatment Furnaces ........................................................................ 24

2.1.2.1  Induction Furnace .................................................................................................... 24

2.1.3 Infrared Heat treatment Furnace ............................................................................ 25

2.1.3.1 Gas Fired Infrared Heater .......................................................................................... 25

2.1.4 Combustion Furnaces ............................................................................................ 26

2.2      REFRACTORIES ........................................................................................................... 26

2.2.1      Types of Refractories ......................................................................................... 28

2.3     Examples of Refractories ............................................................................................ 28

2.3.1 Fireclay Refractories .............................................................................................. 28

2.3.2 High alumina Refractories ..................................................................................... 29

2.3.3 Chromites Refractories .......................................................................................... 29

2.3.4  Silica Brick ........................................................................................................... 30

2.3.5 Zirconia Refractories ............................................................................................. 31

2.3.6  Oxide Refractories (Alumina) .............................................................................. 31

2.3.7  Monolithic ............................................................................................................ 32

2. 4     Insulation Materials ............................................................................................... 33

2.4.1  Ceramic fibre ......................................................................................................... 34

2.4.2 Natural Fibre insulation: ........................................................................................ 34

 2.5 Heat Losses:  in a furnace, heat is lost as .................................................................. 35

2.6 Waste Heat Recovery:  . ................................................................................................ 35

2.6.1 Charge Pre-heating ...................................................................................................... 35

2.6.2 Preheating of Combustion Air ............................................................................... 36

2.6.3 Other Uses:   .......................................................................................................... 36

2.7  Furnace Design Considerations ................................................................................. 36

2.8 Ferrous and Non Ferrous Metals/Alloys ....................................................................... 37

2.8.1 Ferrous metals........................................................................................................ 37

2.8.2 Non Ferrous Metals:. ............................................................................................. 38

2.9    Locally Available Insulating Material .......................................................................... 38

2.9.1  Kaolin;. ................................................................................................................. 38

2.9.2  Ash:. ....................................................................................................................... 39

2.9.3 Saw Dust: . ............................................................................................................. 39

2.9.4  Charcoal dust:. ....................................................................................................... 39

2.10    OTHER MATERIALS ..................................................................................................... 40

2.11   Thermal Properties of an Insulating Material ............................................................. 40

2.11.1  Thermal Conductivity ........................................................................................... 41

2.11.2  Specific Heat Capacity ......................................................................................... 41

2.12.3  Thermal Diffusivity: ............................................................................................. 41

CHAPTER 3      DESIGN, METHODS AND IMPLEMENTATION ..................................................... 42

 3.1 Design Criteria………………………………………………………………42

3.2  Constraint .................................................................................................................. 42

3.3  Design Calculation ........................................................................................................ 43

3.3.1 Charge Material Consideration .............................................................................. 43

3.3.2 Crucible Volume: .................................................................................................. 43

3.3.3 Furnace Chamber Volume/Dimension: ................................................................. 44

3.3.4 Adiabatic flame Temperature of Butane Gas:   ..................................................... 44

3.3.5 Enthalpy of Combustion; ....................................................................................... 47

     3.3.6   Rate of Energy Released from Gas .......................................................................... 49  

     3.3.7   Stochiometric Air Requirement ............................................................................... 50

     3.3.8    Furnace Energy Requirement: ................................................................................ 51

3.4     Design Concepts ........................................................................................................ 52

3.4.1 Material Part Selection .......................................................................................... 52

    3.4.2  Design Concepts and Selection ................................................................................ 54

3.4.2.1   Design Concept ONE .......................................................................................... 55

3.4.2.2    Design Concept TWO ........................................................................................ 56

3.4.2.3    Design Concept THREE ..................................................................................... 57

3.5   DECISION MATRIX ................................................................................................. 58

3.6   Minimum Insulation Thickness ................................................................................... 58

3.7   Critical Radius Calculation ........................................................................................... 59

 3. 8  Fabrication / Construction ........................................................................................ 61

CHAPTER FOUR.  TESTING, PERFORMANCE EVALUATION AND RESULTS ................................. 67

4 .1  Furnace Operation Principle...................................................................................... 69

4.2 Furnace Operation: .................................................................................................... 69

     4.3 BILL OF ENGINEERING MEASUREMENT & EVALUATION .............................................. 69

4.4 Testing ....................................................................................................................... 71

4.4.1 GAS: ...................................................................................................................... 71

4.4.2 ELECTRICITY: .................................................................................................... 72

4.5 Safety Precaution....................................................................................................... 74

CHAPTER ONE

INTRODUCTION

1.0  BACKGROUND STUDY

In  the  world  of  materials,  Heat  treatment  is  an  aspect  that  cannot  be  over  emphasized  as  it

imparts desirable properties to materials, thus increasing their ability to perform the intended

function  more  effectively.  Invariably  as  all  industries  use  various  materials  therefore

activities of these industries depend directly or indirectly on heat treatment.  

Heat treatment may be defined as the controlled heating and cooling of material in order to

deliberately  improve  their  properties  (e.g.  mechanical,  thermal,  corrosion,  microstructure,

hardness, ultimate tensile stress, fatigue strength, Impact strength).  

Heat treatment has been found to be a resourceful technique for improving thermal properties

(heat  capacity,  coefficient  of  expansion,  thermal  conductivity),  corrosion  properties  and

micro structural properties of engineering materials. Heat treatment is often associated with

increasing  the  strength  of  material,  but  it  can  also  be  used  to  refine  the  grain  size,  relieve

internal stress, to improve machinability and formability as well as for restoring the ductility

after a cold working. The tool for heat treating materials is known as heat treatment furnace  

According  to  Rajan  et.  al.  (1988),  a  heat  treatment  furnace  is  a  heating  chamber  that  is  a

refractory  or  lagged  enclosure  which  contains  the  charge  and  retains  heat  that  should  be

measurable as well as controllable. However, it is observed that in a heat treatment furnace,

the heat is not measured but the temperature.  

Hence, a heat treatment furnace is a heating chamber that is a refractory or lagged enclosure

which contains the charge and retains heat at a temperature that should be measurable as well

as  controllable.  Heat  treatment  furnaces  with  effective  temperature  sensing,  heat  retaining

capacity  and  controlled  environment  are  necessary  for  heat-treatment  operations  to  be

 successfully  performed.  (Alaneme  and  Olanrewaju,  2010)  Furnace ideally  should  heat  as

much of material as possible to a uniform temperature with the least possible fuel and labour.

The  furnace  also  requires  a  control  system  to  regulate  the  temperature  in  the  furnace

accurately. In heat treatment furnace, as in melting furnace, heat is transferred via two modes;

convection and radiation.

A good heat treatment furnace should possess some qualities

  · It must be safe to the user  

  · Must minimize heat loss

The  primary  objective  in  the  heating  stage  is  to  maintain  uniform  temperatures  as  uneven

heating  can  lead  to  a  part  of  the  charge  material  expanding  faster  than  the  other,  causing

distortion or cracking.  

1.1 TYPES OF HEAT TREATMENT FURNACE

There are various types of heat treating furnace:

  · Fuel Fired Heat Treatment Furnace powered by the combustion of fuel to release

      energy in the presence of air  

  · Electrically  Powered  Heat  Treatment  Furnace powered  through  the  passage  of

      electric current through a heat element (highly resistance material) e.g.  Kanthal wire,

      Silicon Carbide, etc.

  · Solar Powered Heat Treatment  Furnace:  in  this furnace, the heat  source is  from

    the sun as it radiates solar energy which can be focused to the crucible by parabolic

      mirrors or Fresnel lens thus increasing the temperature.  

   · Infra  Red  Heat  Treatment  Furnace;  a  form  of  either  electric  or  fuel  fired  heat

      treatment  in  which  electromagnetic  radiation  range  780nm  to  1400nm  is  dissipated

      from  an  emitter/  emitter  tube  which  may  be  made  of  carbon,  nichrome,  quartz

      tungsten, etc.

  · Induction  Heat  Treatment  Furnace; a  form  of  electric  heat  treatment  in  which  a

      copper  tubing  of  high  conductivity  is  wound  into  helical  coil  contained  within  steel

      shell support and connected to electrical source

1.2    Components of a furnace

1.2.1 Energy source: this is the source of energy for the heating of the furnace, it forms the

basic classification of heat treatment furnace and is broadly classified into two;  

  · Fuel powered by the combustion of fuel to release energy in the presence of air  

  · Electrically  powered  through  the  passage  of  electric  current  through  a  heat  element

      (highly resistance material).

1.2.2 Refractory Chamber: this is an enclosure that is constructed of insulating material so

as  to  retain  heat  in  the  furnace.  The  insulating  material  facing  the  hot  face  should  be

chemically  inert  while  the  material  facing  the  surrounding  should  have  low  thermal

conductivity  in  the  case  of  composite  walls.  The  main  aim  is  to  minimize  heat  loss  to  the

furnace surrounding.

1.2.3  Instrumentation and Control System: heat treatment furnace operation retains heat

at certain temperature, thus the need to maintain such temperatures by means of control and

temperature measurement devices  

 1.2.4 Crucible: this contains the charge material and in some cases may be the same as the

refractory chamber and in other cases may be a separate entity contained within the refractory

chamber but possesses high thermal conductivity, high melting point and chemically inert.

1.2.5 Heat  Exchanger/Exhaust: found  basically  on  fuel  fired  furnaces,  exhaust  conveys

the  combustion  product  to  the  surrounding  while  heat  exchanger  uses  the  exhaust  gases  in

preheating charge or combustion air thereby improving the overall furnace efficiency

1.2.6 Charging  /  Discharging  door: this  is  an  access  to  the  crucible  in  other to  load  the

charge material or unload it.

                        1.3 STATEMENT OF PROBLEM

The  exorbitant  cost  of  heat  treatment  furnace  has  been  responsible  for  its  dearth  in  the

material science laboratory of our Universities.

The epileptic nature of power supply in country  has made it imperative to look inward and

develop an alternate power source for furnaces in use in the university.

 It is  therefore of outmost  importance to design  and fabricate an eco friendly low cost  heat

treatment furnace with dual power sources, to be used interchangeably to be put to functional

use. Thus, the need to exploit locally available materials.  

This would invariably reduce the total heavy dependence of foreign equipment and increase

the stock of locally made ones.

 1.4 OBJECTIVES

The  general aim  of  this  project  is  to  design  and  fabricate  a  dual-powered  heat  treatment

furnace for the Material  Science  Laboratory  of the Department  of Mechanical  Engineering,

The University of Ibadan.

The specific objectives are

To  carry  out  a  detailed  design  of  a  dual-powered  heat  treatment  furnace  and  produce  its

working drawing in AutoCAD/Solid works

To fabricate a Dual-Powered Heat Treatment Furnace  

To carry out Performance Analysis of the Fabricated Dual-Powered Heat Treatment Furnace.

1.5 SCOPE OF STUDY  

It  is  expected  that  the  dual-powered  heat  treatment  furnace  will  be  fabricated  with  readily

available materials and put to good use in the Material Science Laboratory of the Department

of Mechanical Engineering

It  would  also  provide  an  option  in  terms  of  the  alternate  power  source  in  event  of  the

unavailability of one power source.

1.6 JUSTIFICATION

The desire to see heat treatment effectively carried out in a furnace that shall not be restricted

to a single power source but rather two, such that, in case of the unavailability of one, heat

treating activities shall not be stalled.

 Such  furnace  that  is  safe,  energy  efficient,  cost  effective  and  ultimately  eco-friendly  in  the

Material Science Laboratory of the Department of Mechanical Engineering.

1.7 EXPECTED CONTRIBUTION

It  is  expected  that  at  the  end  of  completion  of  this  work,  a  Dual-Powered  Heat  Treatment

Furnace  would  have  been  fabricated  and  shall  be  of  indispensable  value  to  the  Material

Science Laboratory.

1.8 ORGANIZATION OF STUDY  

Extensive Literature review

Market Survey to determine availability of materials.

Detailed design and CAD modelling using SolidWorks®  

Consultation with Engineering Students, Technicians, Technologist

Material Acquisition  

Furnace Fabrication/Construction  

Furnace Testing/ Performance Analysis   

.

DESIGN AND CONSTRUCTION OF DUAL–POWERED HEAT TREATMENT FURNACE



TYPE IN YOUR TOPIC AND CLICK SEARCH.






RESEARCHWAP.ORG

Researchwap.org is an online repository for free project topics and research materials, articles and custom writing of research works. We’re an online resource centre that provides a vast database for students to access numerous research project topics and materials. Researchwap.org guides and assist Postgraduate, Undergraduate and Final Year Students with well researched and quality project topics, topic ideas, research guides and project materials. We’re reliable and trustworthy, and we really understand what is called “time factor”, that is why we’ve simplified the process so that students can get their research projects ready on time. Our platform provides more educational services, such as hiring a writer, research analysis, and software for computer science research and we also seriously adhere to a timely delivery.

TESTIMONIES FROM OUR CLIENTS


Please feel free to carefully review some written and captured responses from our satisfied clients.

  • "Exceptionally outstanding. Highly recommend for all who wish to have effective and excellent project defence. Easily Accessable, Affordable, Effective and effective."

    Debby Henry George, Massachusetts Institute of Technology (MIT), Cambridge, USA.
  • "I saw this website on facebook page and I did not even bother since I was in a hurry to complete my project. But I am totally amazed that when I visited the website and saw the topic I was looking for and I decided to give a try and now I have received it within an hour after ordering the material. Am grateful guys!"

    Hilary Yusuf, United States International University Africa, Nairobi, Kenya.
  • "Researchwap.org is a website I recommend to all student and researchers within and outside the country. The web owners are doing great job and I appreciate them for that. Once again, thank you very much "researchwap.org" and God bless you and your business! ."

    Debby Henry George, Massachusetts Institute of Technology (MIT), Cambridge, USA.
  • "Great User Experience, Nice flows and Superb functionalities.The app is indeed a great tech innovation for greasing the wheels of final year, research and other pedagogical related project works. A trial would definitely convince you."

    Lamilare Valentine, Kwame Nkrumah University, Kumasi, Ghana.
  • "I love what you guys are doing, your material guided me well through my research. Thank you for helping me achieve academic success."

    Sampson, University of Nigeria, Nsukka.
  • "researchwap.com is God-sent! I got good grades in my seminar and project with the help of your service, thank you soooooo much."

    Cynthia, Akwa Ibom State University .
  • "Sorry, it was in my spam folder all along, I should have looked it up properly first. Please keep up the good work, your team is quite commited. Am grateful...I will certainly refer my friends too."

    Elizabeth, Obafemi Awolowo University
  • "Am happy the defense went well, thanks to your articles. I may not be able to express how grateful I am for all your assistance, but on my honour, I owe you guys a good number of referrals. Thank you once again."

    Ali Olanrewaju, Lagos State University.
  • "My Dear Researchwap, initially I never believed one can actually do honest business transactions with Nigerians online until i stumbled into your website. You have broken a new legacy of record as far as am concerned. Keep up the good work!"

    Willie Ekereobong, University of Port Harcourt.
  • "WOW, SO IT'S TRUE??!! I can't believe I got this quality work for just 3k...I thought it was scam ooo. I wouldn't mind if it goes for over 5k, its worth it. Thank you!"

    Theressa, Igbinedion University.
  • "I did not see my project topic on your website so I decided to call your customer care number, the attention I got was epic! I got help from the beginning to the end of my project in just 3 days, they even taught me how to defend my project and I got a 'B' at the end. Thank you so much researchwap.com, infact, I owe my graduating well today to you guys...."

    Joseph, Abia state Polytechnic.
  • "My friend told me about ResearchWap website, I doubted her until I saw her receive her full project in less than 15 miniutes, I tried mine too and got it same, right now, am telling everyone in my school about researchwap.com, no one has to suffer any more writing their project. Thank you for making life easy for me and my fellow students... Keep up the good work"

    Christiana, Landmark University .
  • "I wish I knew you guys when I wrote my first degree project, it took so much time and effort then. Now, with just a click of a button, I got my complete project in less than 15 minutes. You guys are too amazing!."

    Musa, Federal University of Technology Minna
  • "I was scared at first when I saw your website but I decided to risk my last 3k and surprisingly I got my complete project in my email box instantly. This is so nice!!!."

    Ali Obafemi, Ibrahim Badamasi Babangida University, Niger State.
  • To contribute to our success story, send us a feedback or please kindly call 2348037664978.
    Then your comment and contact will be published here also with your consent.

    Thank you for choosing researchwap.com.